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Abstract. A lowest-order constrained variational (LOCV) method, with modified conditions of
healing on the two-body Jastrow wave function, is investigated in calculations for the ground-state
energy levels of many-body spin-polarized atomic deuterium. Results are obtained for the↓D↑1 ,

↓D↑2 and↓D↑3 phases, corresponding to equal occupations of one, two or three nuclear spin states.
Estimates for the optimum healing conditions are obtained by comparison of LOCV results with
current Monte Carlo benchmarks. The nature of the phases, i.e., quantum gas or quantum liquid, is
discussed, the energy of the↓D↑1 phase in our calculations always occurring above the gas–liquid
interphase for healing conditions within a physically acceptable range.

1. Introduction

The helium liquids have long been a favourite testing ground for many-body methods in
quantum physics. In recent years an increasing amount of attention has been directed towards
spin-polarized quantum systems, notably liquid3He. Some systems, however, such as electron-
spin-polarized atomic hydrogen, will exhibit properties with a quantum behaviour even more
extreme than that observed in liquid3He. This can be visualized using the ‘quantum parameter’,
i.e., η = h̄2/(mεσ 2), whereε and σ are related to the depth and repulsive core range,
respectively, of the two-body interaction [1]. Aggregates of weakly interacting elements of
low mass should then be strongly influenced by quantum mechanics, the lightest element being
hydrogen. The alignment of electron spins to prevent the formation of diatomic H2 molecules
would then enhance the zero-point energy even more.

Hydrogen exists in the form of three isotopes: hydrogen, deuterium and tritium, commonly
denoted as H, D and T, respectively. In many-body calculations, electron-spin-polarized D, or
↓D, is interesting from several points of view. One is that bulk↓D, in the absence of external
pressure, should exist close to the gas–liquid interphase. Only small variations in the external
pressure or field would then be needed in order to observe critical behaviour near the transition.
Hence the role of the nuclear spin, denoted as D↑, is important, since the ground-state energy
of the bulk system then will depend on how↓D atoms are distributed among the spin states
available. The deuteron spin beingI = 1, bulk↓D↑ should exhibit three possible levels of
degeneracy, sinceIz = +1, 0,−1. Access to a given state of polarization should then be
possible by the controlled application of an external magnetic field. With only one spin state
occupied, bulk↓D↑1 would be a one-component Fermi system which resembles spin-polarized
liquid 3He, i.e., liquid3He↑1. Cases of two- and three-component Fermi systems would then
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be bulk↓D↑2 and↓D↑3, respectively, where the former is analogous to unpolarized3He, i.e.,
liquid 3He↑2, and the latter has no such analogue.

Results for the ground-state energy levels of many-body↓D↑1, ↓D↑2 and↓D↑3 are here
obtained in calculations with a constrained variational approach, which improves upon the basic
Jastrow function without going explicitly beyond second order. The modification involves the
use of a parameter for the healing condition which is derived from the cluster expansion. In
numerical calculations this parameter is adjusted with respect to some known property of the
system, such as the equilibrium density. This is somewhat reminiscent of the approach in
Landau theory, where a number of parameters are ‘tuned’ to reproduce certain experimental
results. Other properties may in principle then be derived, which might not be experimentally
accessible. Whereas Landau theory is of a phenomenological nature, however, the modified
LOCV method is closer to the pure microscopic approach. Small-scale variations, which
might exist in the density dependence of some physical quantities, should then be easily
accessible since there is no stochastic element involved in such calculations. For instance,
the polarization dependences of quantities such as the compressibility, sound velocity and
magnetic susceptibility are not known in the case of many-body electron-spin-polarized atomic
deuterium.

The LOCV method may be used for Bose systems as well as Fermi systems, previous
results for liquid4He [2,3] being in excellent agreement with Monte Carlo results [4]. In the
case of Fermi systems, results for both the unpolarized and fully spin-polarized phases of liquid
3He [5] were also found to be in excellent agreement with variational Monte Carlo (VMC)
and Fermi hypernetted-chain (FHNC) results [6, 7]. Our aim in this work, then, has been to
determine how well the current benchmark results reported in VMC many-body calculations [8]
for ↓D↑1, ↓D↑2 and↓D↑3 can be reproduced in the constrained variational approach.

Fortunately, the basic two-body hydrogen interaction is very accurately known. A reliable
theoretical description is given by theb36+

u potential, derived by Kolos and Wolniewicz [9]
and used by Panoff and Clark in their VMC calculations [8]. It is accurately reproduced by
a Silvera model [10, 11], here denoted as S1. A modified form of the S1 model, however, is
generally regarded as the best empirical representation of theb36+

u potential. This model [12]
is denoted as S2 in our calculations. To illustrate the response of the results to the choice of
interaction, we also include, using the conventional healing condition in LOCV calculations,
a few results obtained with both the S1 model and an older Lennard-Jones (LJ) model [1] in
addition to results obtained with the S2 model.

2. The LOCV method

In classical statistical mechanics, the many-body problem is developed from the configuration
integral

QN(V, T ) =
∫

exp
[−βU(r1, . . . , rN)

]
d3Nr1 · · · d3NrN (1)

whereU ≡ U(r1, . . . , rN) is the potential energy, i.e.,

U =
∑ ∑

16i<j6N
v(ri , rj ) +

∑ ∑
16i<j<k6N

∑
v(ri , rj , rk) + · · · .

The LOCV method [13] depends on a generalization of Van Kampen’s expansion [14] of
equation (1) to quantum statistical mechanics, enabling the energy

E = 〈9|H |9〉〈9|9〉 (2)
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to be developed in a cluster series. This technique is Nosanow’s cluster expansion [15], and
requires the use of a generalized normalization integral, given by

M(γ ) = 〈9|eγH |9〉 .
An expression for the energy consistent with (2) is then

E = lim
γ→0

∂

∂γ

[
lnM(γ )

]
(3)

whereby a series expansion follows by assuming a product expansion forM(γ ). In Nosanow’s
method we thus treat the generalized normalization integral in the spirit of Van Kampen’s
technique. Hence,

M(γ ) =
N∏
n=1

Mn(γ ) (4)

is obtained, where

Mn(γ ) =
∏
{n}∈N

{〈
9n|eγHn |9n

〉 [n−1∏
m=1

M(n)
m (γ )

]−1}
is expanded with respect to all distinct clusters,9n representing a cluster wave function. The
nth-order term is

Mn(γ ) =
∏ ∏

16i1<i2�in6N
· · ·
∏ 〈

9(xi1xi2 · · ·xin )|eγH(xi1xi2 ···xin )|9(xi1xi2 · · ·xin )
〉

M1(γ ;xi1 · · ·xin ) · · ·Mn−1(γ ;xi1 · · ·xin )
(5)

where

M1(γ ;xi1 · · ·xin ) =
∏

i16j16in

〈
9(xj1)|eγH( )|9( )

〉
M2(γ ;xi1 · · ·xin ) =

∏ ∏
i16j1<j26in

〈
9(xj1xj2)|eγH( )|9( )

〉
M1( )

...

Mn−1(γ ;xi1 · · ·xin ) =
∏ ∏

i16j1<j2�jn−16in
· · ·
∏ 〈

9(xj1 · · ·xjn−1)|eγH( )|9( )
〉

M1( ) · · ·Mn−2( )
.

Using (3), (4) and (5), the energy contributions can be obtained. Hence, the total ground-
state energy is finally obtained as

E =
N∑
n=1

{∑ ∑
16i1<i2�in6N

· · ·
∑

Cn(i1, i2, . . . , in)

}
(6)

where thenth-order term is

Cn(i1, i2, . . . , in) = 〈9n|Hn|9n〉〈9n|9n〉 −
n−1∑
m=1

{ ∑
i16j1�jm6in

· · ·
∑

Cm(j1, j2, . . . , jm)

}
.

Strong repulsion at short separation is the dominant interaction feature. Hence, with
xi representing both orbital and nuclear spin coordinates, a convenient choice of trial wave
function for the components of

9({i, j}) =
∏
{i,j}∈N

92 ≡
∏ ∏

16i<j6N
9(xi ,xj )
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is the Jastrow function [16], i.e.,

92 = 1√
�
8(R)

∞∑
L=0

fL(r)PLφ(r, σ ) (7)

where the centre-of-mass wave function, usingR = 1
2(ri + rj ), reads

8(R) = 1√
�

exp(iK ·R)

andPL is a projection operator for theLth partial wave. Withr ≡ |ri − rj | for the relative
coordinate,fL(r) is a spherically symmetric correlation function. On physical grounds, we
require (i)fL → 0 in the limit of zero separation and (ii)fL → 1 in the limit of very large
separations. In practical calculations, however, it will be convenient to specify some finite
valuedL for the interparticle separation, at which correlations vanish. When this condition is
realized, the ‘wound’ in the wave function, as caused by the potential interaction energy, has
been ‘healed’, and consequentlydL is known as the healing distance. Thus, (ii) above should
be replaced by

fL(r = dL) = 1. (8)

The physical justification of (8) is the assumption that two-body correlations in the system
are mainly due to strong repulsive effects at short, i.e., finite, range. Nevertheless, weaker
correlations exist at intermediate ranges which, in turn, means that this condition is not strictly
true whenr > d. The specification of adL at which correlations cease altogether, however,
requires the additional condition

f ′L(r > dL) = 0

which implies that (8) must be extended to separations for whichr > d. Furthermore,dL = d
is imposed for allL since, due to the finite range of the interaction core, correlations in higher
L-states must be weak. Finally, the boundary conditions onfL(r) are stated as

fL(r = 0) = 0

fL(r > d) = 1 (9)

f ′L(r > d) = 0.

Assuming translational invariance, i.e., plane waves for the single-particle wave functions,
the uncorrelated relative contribution to (7) reads

φ(r, σ ) = exp(ik · r)χ(n)(σi, σj )− exp(−ik · r)χ(n)(σj , σi) (10)

where an expansion in terms of partial wavesL is used, i.e.,

exp(±ik · r) =
∞∑
L=0

(±1)LiL(2L + 1)jL(kr)PL(cosθ).

In the case of spin-1 deuterons, the distinct permutations ofσi, σj onχi, χj result in nine
nuclear spin states; that is,

χ(n)(σi, σj ) = χi(σi)χj (σj )
where(σi, σj ) equals(+1,+1), (+1, 0), (0,+1), (0, 0), (+1,−1), (−1,+1), (−1,−1), (0,−1)
and (−1, 0) when n = 1, . . . ,9, respectively. These may be rearranged into linear
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combinations corresponding to eigenvalues of the total spinS. Hence,χS(σi, σj ) can either
be one of theSz = +2,+1, 0,−1,−2 (S = 2) quintuplet states

χS(σi, σj ) =



χ(1)(σi, σj )

1√
2
χ(2)(σi, σj ) +

1√
2
χ(3)(σi, σj )

1√
2
χ(5)(σi, σj ) +

1√
2
χ(6)(σi, σj )

1√
2
χ(8)(σi, σj ) +

1√
2
χ(9)(σi, σj )

χ(7)(σi, σj )

(11)

or it can be one of theSz = +1, 0,−1 (S = 1) triplet states

χS(σi, σj ) =



1√
2
χ(2)(σi, σj )− 1√

2
χ(3)(σi, σj )

1√
2
χ(5)(σi, σj )− 1√

2
χ(6)(σi, σj )

1√
2
χ(8)(σi, σj )− 1√

2
χ(9)(σi, σj )

(12)

or, finally, theSz = 0 (S = 0) singlet state

χS(σi, σj ) = χ(4)(σi, σj ). (13)

An interchange ofσi andσj now makes the quintuplet and singlet states symmetric and
the triplet state antisymmetric. Hence, equation (10) becomes

φ(r, σ ) = [exp(ik · r)− (−1)S exp(−ik · r)]χ(n)(σi, σj ).

The correct antisymmetry requires theS = 1 triplet for evenL and theS = 0 singlet or the
S = 2 quintuplet for oddL. Due to weak correlations in higher-L states,L = 0 andL = 1
are assumed in the two cases, respectively.

For the first termC1 in the energy expansion,91 is a normalized plane wave andH1 is
simply taken to be the kinetic energy operator

H1 = − h̄
2

2m

∂2

∂r2
.

For the second termC2, the matrix elements of

H2 = − h̄
2

4m

(
∂2

∂R2

)
− h̄

2

m

(
∂2

∂r2

)
+ v(r)

are taken with respect to theLth-wave contributions of92, i.e.,9L
2 = fLPL82. The terms

C3, C4, . . . are discarded, and, usingJL(kr) ≡ krjL(kr) for the spherical Bessel equation,
E = E1 +E2 becomes

E =
∑

16i6N

h̄2k2
i

2m
+
∑ ∑

16i<j6N

1

〈92|92〉
∞∑
L=0

〈8L
2 |vL|8L

2 〉 (14)

where the effective interaction is

vL(r) =
{
−λLf 2

L(r) r < d

v(r) r > d
(15)
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and

〈92|92〉 = 2
2∑
S=0

(∑
{Sz}

∣∣χS(σi, σj )∣∣2) (16)

is obtained for the normalization of the wave function. Due to spherical symmetry, a radial
variation results forδE = 0, i.e.,

δ

∫ d

0
J 2
L

[
− h̄

2

m

(
f ′′LfL + 2f ′L

J ′L
JL
fL

)
+ (v + λL)f

2
L

]
dr = 0 (17)

where the explicit dependency onk has been eliminated by the choice of an average momentum.
Using the root mean square value ofk ≡ | 12(ki−kj )|, the angular integration ofK = |k1 +k2|
with respect to the geometry of allowed combinations forki ,kj in (17) is

∫
d�K =


4π 0< 1

2K < kF − k

4π

(
k2

F − k2 − 1

4
K2

)
(kK)−1 kF − k < 1

2K < (k2
F − k2)1/2

0 (k2
F − k2)1/2 < 1

2K <∞.

The total integration with respect toK of a pair of particles with a givenk then becomes∫
d3K = 32

3
πk3

F

[
1− 3

2

(
k

kF

)
+

1

2

(
k

kF

)3]
(18)

wherekF denotes the Fermi wavenumber. Thus,

kav =
√

0.3kF

is obtained for the average momentum. Agreement with the boundary conditions introduces
a constraint and requires the inclusion of a Lagrange multiplierλL. Hence, usinguL(r) ≡
fL(r)JL(kr), equation (9) implies

u′′L(r)−
{
m

h̄2

[
v(r) + λL

]
+
L(L + 1)

r2
− k2

av

}
uL(r) = 0 (19)

upon solution of the Euler–Lagrange equations. The Lagrange multiplier is thus the math-
ematical equivalent of our average background field.

The truncation (14) of the cluster expansion (6) is justified by the assumption that the
most important contributions, i.e., those due to the core of the interaction, are of sufficiently
short range to be described by two-body clustering terms (correlations with nearest neighbours
only) and that all other contributions (the totality of interactions with distant neighbours as well
as the intermediate- and long-range part of the nearest-neighbour interaction) are adequately
described by the average field. It is important to realize the implication that correlations in the
clustering sense are not present between distant neighbours in this assumption. Unfortunately,
due to this truncation, the upper-bound variational property of (2) is lost in our calculations.

In conventional LOCV calculations, the conditions of healing are derived by requiring,
on average, that the sum with respect toi andj over

P2 = 〈92|O2|92〉
〈92|92〉 (20)

where

O2 =
{

0 r > d

1 r < d
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should be consistent with finding exactly one other particle within the correlation volume. For
ther < d probability per pair, this givesP2 = O2, where

O2 = 1

N − 1
≈ 1

N

in the limitN →∞ of a large system. For a homogeneous isotropic system, this probability
must be proportional to the probability per unit volume, i.e.,

P2 = ζ ω(d)
�

(21)

whereζ is the proportionality constant. We thus obtain

ρω(d) = 1 (22)

whenζ = 1, for the healing conditions.
Equations (20) to (22) correspond to Pandharipande’s original definition of the healing

distance [13], where it is hoped that local correlations left out in the truncation of (6) are either
sufficiently weak to be neglected or may be merged, without inducing too large errors, with
the global-type correlations assumed forfL(r).

This may not represent the best choice of a healing distance, however, since the flexibility
inherent in such a concept has then not been fully exploited. Using instead Nosanow’s full
expansion for the clustering probability, i.e.,

P = 〈9|O|9〉〈9|9〉
a separate treatment of local and global average contributions can be visualized by invoking an
independent-particle-model analogy for the lowest-order terms in the series. In the expansion
for E these terms represent the kinetic energy contributions, whereas in the expansion forP

we define

P1 =
(
N

1

)−1 ∑
16k6N

〈O1〉

where〈O1〉 is the normalized expectation value with respect to91 of identifying particlei
within some setni of particles, i.e.,

〈O1〉 ≡ 〈91|O1|91〉
〈91|91〉 .

Statistically, we obtainP1 = O1, where

1

N
6 O1 6 1 (23)

when 16 ni 6 N , respectively. With a truncation of

P =
N∑
k=1

Pk (24)

at k = 1, P = 1 requiresni = N , in which case contributions are from the kinetic energy
alone. Thus, the ideal gas provides an adequate model,N = 1 representing a free particle.
Considering theN > 1 interacting system, on the other hand, we haveni < N for the number
of uncorrelated particles, i.e.,P < 1, a situation which may be interpreted as requiring an
average fieldλ(1)L for a ‘full’ description.
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In the presence of strong short-range correlations, however, a specific treatment is required
to handle local distortions to the fieldλ(1)L . We then consider in detail the correlations ofi with
j . Hence, settingni = 1, equation (23) is ‘re-scaled’ to

1

N(N − 1)
6 O1 6

1

N

for the respective limits, when 16 nj 6 N − 1, on the joint probability ofni andnj . For the
second-order term in Nosanow’s cluster expansion,

P2 =
(
N

2

)−1∑ ∑
16i<j6N

{〈
O2
〉− ( 2

1

)−1 ∑
i6k6j

〈
O1
〉}

(25)

we next introduce

O2 =
{
O1 r > δ

1 r < δ

where〈O2〉 is the expectation value with respect to92 of observingr < δ. Defining

Õ2 ≡ O2 −O1 (26)

we obtain statisticallyP2 = Õ2, and (26) becomes

Õ2 = η̂N − nj
N(N − 1)

η̂ being the number of times thatr < δ occurs in the expansion with respect toi. For each
sum overj , the occurrence of a single such event, i.e.,η̂ = 1, constitutes two-body clustering.
ConsideringN = 2, we havenj = 1, and since

P = nj (N − 2) + η̂N

N(N − 1)
(27)

the only solution which is consistent withP = 1 is η̂ = 1. This corresponds to two-body
scattering. ConsideringN = 3, on the other hand, we have 16 nj 6 2. In this case,P = 1
requires

4

3
6 η̂ 6 5

3
.

That is, it requires cluster contributions beyond second order. Assumingη̂ = 1 nonetheless,
we obtain for the clustering probability

2

3
6 P 6 5

6

i.e.,P < 1, and a local clustering fieldλ(2)L must be used to account for the truncation of (24)
at k = 2. From (27) we see thatP = 1 can also be obtained witĥη = 1 for anyvalue ofN ,
provided thatnj = N . However,nj = N would mean that the independent-particle model
provides an adequate description. Hence,Õ2 vanishes, as it should for a weakly interacting
system. ForN > 1, we generally obtain

1

N(N − 1)
6 Õ2 6

1

N

whenN − 1> nj > 1. With

P2 = ω(δ)

�
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this leads to
1

N − 1
6 ρω(δ) 6 1 (28)

whereN > 1, for the healing condition.
It may be noted that, consistently with the truncation atn = 2 of the expansion forE,

equation (22) is now obtained forN = 2 rather than in the limitN →∞. Thus, forN > 2,
the parameterζ in (21) can be stated as

0< ζ 6 1

providing a ‘renormalized’ healing condition, i.e.,ω(d) → ω(δ) = ζω(d), whereby a
modified healing distanceδ < d is obtained forζ < 1. As ζ is decreased within the interval
above, the validity of (28) becomes more questionable. The average fieldλL may thus, in
general, be regarded as a compromise between a global long-range attractive field and a local
short-range repulsive ‘clustering’ field.

Next, the sum over distinct pairsi, j is replaced by an integration; that is, for some function
G we obtain

1

2

kN∑
ki 6=kj

kN∑
G(ki, kj )→ 1

2
η2
∫
|k|<kF

G(k)

∫
d3K d3k (29)

where

η = ν �

(2π)3

is the density of states in the Fermi sea, and (18) represents the centre-of-mass integration.
Equation (29), in combination with∫ [

1± cos(2k · r)
] ∫

d3K d3k = 16

9
π2k6

F[1± S2(kFr)]

where

S(kFr) ≡ 3

k3
Fr

3
[sin(kFr)− (kFr) cos(kFr)]

is the Slater function, determines the average contribution toP2 from the matrix element〈O2〉
in (25). Defining

FL(kFr) = 1 + (−1)LS2(kFr)

we obtain

ω(δ) = 4π
1∑

L=0

αLωL(δ) (30)

where we have

ωL(δ) =
∫ δ

0
f 2
L(r)FL(kFr)r

2 dr (31)

with the parametersα0 andα1 depending on the spin states (11), (12) and (13). Forν = 1, spins
occur in the{+1}, {0} or {−1} state. Hence, the spin function is a quintuplet or a singlet state
and we obtainα0 = 0 andα1 = 1. Forν = 2, spins are evenly distributed over the{+1,−1},
{+1, 0} and{0,−1} states. Whereas all three cases then involve one triplet contribution,{+1, 0}
and{0,−1} additionally involve two quintuplet contributions and a singlet contribution. Three
additional quintuplet contributions are involved for{+1,−1}, but no singlet contribution in this
case. The result forν = 2, then, in all three cases, isα0 = 1

4 andα1 = 3
4. Finally, for ν = 3,
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spins are distributed evenly over the{+1, 0,−1} states. Hence, all singlet, triplet and quintuplet
states contribute, in which case we obtainα0 = 1

3 andα1 = 2
3.

The ground-state energy per particle,E = E/N , is now obtained from the truncated
energy expansion (14). An integration over the Fermi sea gives

k3
F =

6π2ρ

ν

and hence the kinetic energy per particle is obtained as

E1 = 3h̄2k2
F

10m
. (32)

Using (14), (15), (16), (29) and (31), we obtain for the potential interaction energy per particle

E2 = −2πρ
1∑

L=0

αL

[
λLωL(δ)−

∫ ∞
δ

v(r)FL(kFr)r
2 dr

]
. (33)

Finally, with (32) and (33), the total energy reads

E = E1 + E2. (34)

3. Results

The results of our LOCV calculations are obtained by solving (19), (30) and (34) self-
consistently with respect to the boundary conditions onfL(r), i.e., equation (9). Below,
results corresponding to density increments of 10−4 Å−3 are displayed.

For conventional LOCV calculations, usingζ = 1 in (21), energy minima for the three
phases obtained with the S1, S2 and LJ interaction models are included in table 1, and curves
for E(ρ) obtained with the S2 interaction model are displayed in figure 1. The only potential
which gives negative energy minima in all phases is the LJ model. The S1 and S2 results
are negative for the↓D↑2 and↓D↑3 phases only. Generally, the difference in energy between
ν = 3 andν = 2 is seen to be somewhat less than half the difference betweenν = 2 and
ν = 1. Furthermore, results obtained with the S2 model are 0.25–0.3 K lower than the S1
results, and results obtained with the LJ model approximately 0.5 K lower than the S2 results.
An increase of about 12% is observed in the equilibrium densityρ0 as the spin degeneracy
increases fromν = 1 toν = 2. Betweenν = 2 andν = 3, however, the equilibrium densities
increase by a much smaller amount. The results which agree best with the VMC results are
those obtained with the S1 interaction model. There are no inversions, i.e., the correct ordering
E(↓D↑3) < E(↓D↑2) < E (↓D↑1) is also obtained for the energy levels.

Table 1. Ground-state energy minima for the↓D↑1 , ↓D↑2 and↓D↑3 phases obtained in conventional
LOCV calculations (ζ = 1) with the S1, S2 and LJ potentials.

ν = 1 ν = 2 ν = 3

ρ0 (Å−3) E (K) ρ0 (Å−3) E (K) ρ0 (Å−3) E (K)

S1 0.00425 0.312 0.00478 −0.040 0.00476 −0.209
S2 0.00468 0.051 0.00524 −0.332 0.00522 −0.499
LJ 0.00499 −0.417 0.00564 −0.845 0.00566 −1.005

In modified LOCV calculations, equation (28) is applied in a mode corresponding to
N > 2. A decrease is then observed inλwith ρ, indicating that cluster contributions neglected
in the truncation of (6) are mainly of a repulsive nature. As far as the two-body interaction is
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Figure 1. Conventional LOCV results (ζ = 1) obtained with the S2 model for the↓D↑1 , ↓D↑2
and ↓D↑3 phases, and the VMC minima (+). Both the LOCV and VMC results shown have

E(↓D↑3) < E(↓D↑2) < E(↓D↑1).

concerned, the repulsive core thus increases in relative importance. Moreover, modifications
are restricted toL = 1 interactions, since effects of higher-order clustering should be less
likely in L = 0 central-force interactions.

The equilibrium density reported in the VMC calculations is the same in all three phases,
i.e., 0.0040 Å−3. Considering bulk↓D↑1, the modified LOCV energy minimum consistent with
this density, usingζ1 = 0.931, is +0.146 K. Comparing instead with the ground-state energy
reported in VMC calculations, i.e., +0.26 K, an equilibrium density of 0.0027 Å−3 is obtained
for ζ1 = 0.775. A value which passes through the VMC minimum is obtained forζ1 = 0.856,
the modified LOCV minimum of 0.217 K in this case occurring at a density of 0.0033 Å−3.
An overall ‘best fit’ is suggested in figure 2 where the minimum ofE = 0.186 K is obtained at
ρ0 = 0.0036 Å−3, usingζ1 = 0.893. Numerical values forE(ρ) corresponding to the results
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Figure 2. The ground-state energyE(ρ) for the↓D↑1 phase, where modified S2 LOCV results
(solid line: ζ1 = 0.893) and VMC (+) results are compared.
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displayed in figure 2 are included in table 2, where data for the average fieldλ1 and the healing
distanceδ are also included. The decrease obtained inλ1 whenζ1 is reduced to 0.893 varies
between 0.13 K at 0.0025 Å−3 and 1.92 K at 0.0060 Å−3, being 0.65 K at 0.0040 Å−3. The
corresponding decrease inδ, which is about 0.11 Å at 0.0040 Å−3, is approximately constant
for this range of densities.

Table 2. Results for the↓D↑1 phase obtained in modified LOCV calculations with the S2 model
for the two-body interactions.

VMCa Modified LOCVb

ρ (Å−3) E (K) δ (Å) δ/ρ λ0 (K) λ1 (K) E (K)

0.0025 0.36 5.569 1.234 — 0.580 0.271
0.0030 0.29 5.308 1.249 — 0.037 0.216
0.0035 0.26 5.101 1.262 — −0.750 0.188
0.0040 0.26 4.931 1.274 — −1.780 0.197
0.0045 4.787 1.285 — −3.053 0.253
0.0050 0.41 4.663 1.296 — −4.565 0.364
0.0055 4.554 1.306 — −6.315 0.538
0.0060 0.71 4.457 1.315 — −8.298 0.782

a Variational Monte Carlo results, from reference [8].
b Using (28), withζ1 = 0.893.

For the↓D↑2 phase, the energy minimum consistent with equilibrium at 0.0040 Å−3 is
−0.148 K, and is obtained forζ1 = 0.839. The result obtained forζ1 = 0.788, however,
corresponds to an energy minimum of−0.106 K at 0.0036 Å−3, and seems to fit the VMC
values over the entire range of densities reported rather well. The result is shown in figure 3. The
changes inλ0, λ1 andδ with ζ1 andρ are analogous to those in the↓D↑1 phase, with decreases
of 1.39 K, 0.87 K and 0.16 Å, respectively, being obtained at 0.0040 Å−3. Numerical data for
some of the densities in the result displayed are included in table 3.
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Figure 3. The ground-state energyE(ρ) for the↓D↑2 phase, where modified S2 LOCV results
(solid line: ζ0 = 1, ζ1 = 0.788; dotted line:ζ0 = 0.980,ζ1 = 0.800) and VMC (+) results are
compared.

The↓D↑3 phase result consistent with the VMC density of 0.0040 Å−3 is−0.314 K, and
is obtained forζ1 = 0.801. Consistency with the VMC energy, on the other hand, moves the
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Table 3. Results for the↓D↑2 phase obtained in modified LOCV calculations with the S2 model
for the two-body interactions.

VMCa Modified LOCVb

ρ (Å−3) E (K) δ (Å) δ/ρ λ0 (K) λ1 (K) E (K)

0.0025 0.00 5.526 1.226 −2.078 0.727 −0.019
0.0030 −0.06 5.275 1.242 −3.230 0.230 −0.076
0.0035 −0.06 5.075 1.256 −4.619 −0.501 −0.105
0.0040 −0.08 4.910 1.269 −6.243 −1.466 −0.096
0.0045 4.770 1.281 −8.102 −2.664 −0.040
0.0050 0.06 4.649 1.293 −10.19 −4.093 0.069
0.0055 4.543 1.303 −12.51 −5.752 0.240
0.0060 0.46 4.448 1.313 −15.05 −7.637 0.478

a Variational Monte Carlo results, from reference [8].
b Using (28), withζ1 = 0.788.

equilibrium density as far down as 0.0030 Å−3, in which caseζ1 = 0.635. Withζ1 = 0.740,
a more successful fit between modified LOCV values and VMC benchmarks is obtained, the
ground-state energy and equilibrium density in this case being−0.270 K and 0.0036 Å−3,
respectively. The result is shown in figure 4. Corresponding numerical values are included in
table 4, and the observed decreases inλ0, λ1 andδ with ζ1 at 0.0040 Å−3 are 1.02 K, 0.66 K
and 0.12 Å, respectively.
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Figure 4. The ground-state energyE(ρ) for the↓D↑3 phase, where modified S2 LOCV results
(solid line: ζ0 = 1, ζ1 = 0.740; dotted line:ζ0 = 0.950,ζ1 = 0.796) and VMC (+) results are
compared.

Plots of the effective interactions (15) are included in figure 5 and figure 6, where the
density dependencies ofv0(r) andv1(r) are shown for the values ofρ that have been included
in the tables.

4. Discussion

In comparing with VMC benchmarks, a few remarks should be made about some of the
approximations used in the LOCV method. Triplet correlations in VMC calculations are
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Table 4. Results for the↓D↑3 phase obtained in modified LOCV calculations with the S2 model
for the two-body interactions.

VMCa Modified LOCVb

ρ (Å−3) E (K) δ (Å) δ/ρ λ0 (K) λ1 (K) E (K)

0.0025 −0.14 5.493 1.220 −1.931 0.763 −0.178
0.0030 −0.19 5.248 1.237 −3.041 0.266 −0.239
0.0035 −0.21 5.052 1.251 −4.384 −0.464 −0.268
0.0040 −0.21 4.890 1.265 −5.958 −1.425 −0.259
0.0045 4.753 1.277 −7.761 −2.618 −0.201
0.0050 −0.10 4.634 1.289 −9.790 −4.038 −0.089
0.0055 4.530 1.300 −12.04 −5.685 0.084
0.0060 0.34 4.437 1.310 −14.52 −7.555 0.325

a Variational Monte Carlo results, from reference [8].
b Using (28), withζ1 = 0.740.
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Figure 5. TheL = 0 effective interaction (15) obtained for the↓D↑3 phase, withρ varied in steps
of 0.0005 Å−3 between (a) 0.0025 Å−3 and (b) 0.0060 Å−3.

explicitly incorporated into the wave function by generalizing upon the Jastrowansatz;
provided that the most important correlations are between nearest neighbours only, Jastrow
correlations defined in conjunction with an average field should not give results that are radically
different from this prescription. Also, whereas an explicit momentum dependence is built
into the wave function in VMC calculations [17], the momentum is treated in an average
way in LOCV calculations. Nevertheless, for Fermi systems intermediate in coupling strength
between nuclear matter and liquid3He, an average over allowed momentum states in the Fermi
sea is expected to be a good approximation [18]. Due to the truncation of the cluster expansion,
however, the feature which is most likely to affect comparisons with VMC results is the loss
of the upper-bound variational property. This results in the ground-state energy levels being
systematically underestimated, an effect which is accentuated for strongly coupled systems
and in the presence of significant short-range correlations beyond nearest neighbours. The
characteristic underestimation is clearly visible in figure 1, where LOCV levels are seen to be
consistently lower than VMC levels.

A number of methods have been used in calculations for many-body↓D↑ν . The result
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Figure 6. TheL = 1 effective interaction (15) obtained for the↓D↑3 phase, withρ varied in steps
of 0.0005 Å−3 between (a) 0.0025 Å−3 and (b) 0.0060 Å−3.

obtained for the↓D↑1 phase with a Galitskii–Feynman–Hartree–Fock (GFHF) method, using
the S2 interaction model, is +41 K at 0.0034 Å−3 [19]. Fermi hypernetted-chain techniques
[20] in conjunction with correlated basis functions [21] have also been applied. Although the
latter FHNC–CBF scheme is generally regarded as more reliable than the GFHF method, the
delicate balance between kinetic and potential energy contributions is in this case obscured by
statistical errors.

The result obtained for bulk↓D↑1 with the FHNC–CBF approach is +0.26 K at 0.0040 Å−3

[21]. In the VMC benchmark calculations, conclusions drawn from the FHNC–CBF scheme
were used to obtain a trial wave function which improves upon the basic two-body Jastrow form
by including triplet and momentum-dependent correlations. In the↓D↑1 phase, however, the
Jastrow energy alone was assumed to be sufficient in FHNC–CBF calculations. The effects of
triplet and backflow correlations in VMC calculations are negligible in this case, but according
to Panoff and Clark [8], the↓D↑1 phase result of +0.26 K at 0.0040 Å−3 should probably be
lowered somewhat. Although the conventional S2 LOCV result obtained is 0.21 K lower, it
still lies above the gas–liquid interphase. This is a very strong indication that bulk↓D↑1 should
be a gas in the ground state, since the right-hand-side limit of (28) represents a ‘lower bound’
for the energy in our calculations.

An interesting question related to results for the↓D↑1 phase is that of how well the Jastrow
function describes the ground state of a spin-polarized Fermi system. For instance, for liquid
3He the Jastrow function alone provides better results for the fully spin-polarized phase, the
exclusion principle then being more effective in preventing a close proximity between particles.
Specifically, in FHNC calculations for liquid3He, inclusion of triplet correlations and backflow
amounts to a shift in the ground-state energy of−0.24 K for the fully spin-polarized phase
and−1.08 K for the unpolarized phase [7]. The corresponding discrepancies between FHNC
results and conventional LOCV results increase from as little as 0.2 K in the former case to
0.7 K in the latter case [5]. In the present calculations the discrepancies between VMC and
LOCV results are more or less comparable, i.e.,1E(↓D↑1) = 0.21 K,1E(↓D↑2) = 0.25 K
and1E(↓D↑3) = 0.29 K, where1E ≡ EVMC − ELOCV. A lowering of the Jastrow energy by
∼0.05–0.10 K, however, would enable a more precise fit to be obtained for the modified LOCV
results to the VMC results. Also, the LOCV Jastrow discrepancy would be notably less in the
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↓D↑1 phase than in both the↓D↑2 and↓D↑3 phases.
For the↓D↑2 phase, a CBF perturbative correction of−0.23 K is obtained in FHNC–CBF

calculations. This results in a ground-state energy of +0.05 K at 0.0035 Å−3 [21]. The S2
GFHF result in this case is +0.03 K at 0.0032 Å−3 [19]. With triplet and backflow correlations,
Panoff and Clark obtain the benchmark saturation value for the↓D↑2 system, i.e.,−0.08 K
at 0.0040 Å−3 [8]. The result which saturates at the VMC energy minimum in modified
LOCV calculations, on the other hand, is obtained at 0.0034 Å−3 for ζ1 = 0.750. In this
case, no healing condition (28) with modifications to theL = 1 interaction component is
consistent with a result in the gas phase. That is, whenζ1 is reduced, the saturation value
initially moves more or less linearly towards higher energies and lower densities. As the gas–
liquid interphase is approached, a (negative) maximum is reached, whereupon the minimum
again moves downward. Only when modifications to theL = 0 interaction component are
included is saturation possible in the gaseous phase. It should, however, be remembered that
the conditions of healing increasingly become more questionable as one moves further away
from the right-hand side limit of (28). Nevertheless, our LOCV results are still a very good
indication that bulk↓D↑2 should be a self-bound liquid.

The CBF perturbative correction reported for the↓D↑3 phase in FHNC–CBF calculations
is −0.27 K, the ground-state energy now being−0.15 K at 0.0035 Å−3 [21]. The energy
obtained in S2 GFHF calculations is−0.31 K at 0.0035 Å−3 [19]. Hence, reliable results
obtained for this system are all consistent with a ground-state energy below the liquid–gas
interphase, Panoff and Clark’s benchmark value being−0.21 K at 0.0040 Å−3. The gaseous
phase is highly improbable, since in our calculations theν = 3 energy always occurs below
theν = 2 energy. In fact, this system is bound already at the two-body Jastrow level in VMC
calculations [22].

The results shown in figures 2, 3 and 4 all saturate at a density of 0.0036 Å−3 with the
healing conditions chosen. In the case of the↓D↑1 phase, however, the exact position of the
minimum is uncertain and the ‘best fit’ shown was chosen so as to agree with the saturation
densities of the other two phases. As far as liquid3He is concerned, triplet contributions
obtained in VMC calculations are seen to be almost exclusively due to theL = 1 interaction
component [23]. The decrease observed in the parameterζ1 is somewhat larger than that
obtained for the healing conditions of liquid3He [5]. Thus, to see how higher-order cor-
relations in the central-force component might affect the energy, the minimum obtained by
modifying theL = 1 component may be used as an initial approximation when modifications
toL = 0 are considered. In the↓D↑2 phase, modifications toL = 0 should probably be small
since the result already obtained forE(ρ) agrees very well with VMC values.

Thus, considering equilibrium densities in the range 0.0035 Å−3 to 0.0040 Å−3, ζ0 is
gradually decreased while requiringζ1 to be consistent with the equilibrium density obtained
when onlyL = 1 is modified. In figure 3, a result forE(ρ) is suggested which fits the VMC
values over the range reported. Usingζ0 = 0.980 andζ1 = 0.800, the equilibrium density
obtained in this case isρ0 = 0.003 64 Å−3 with a ground-state energy ofE = −0.092 K. For the
↓D↑3 phase, an overallE(ρ) which fits the VMC values very well over the range reported also
saturates atρ0 = 0.003 64 Å−3. This result, included in figure 4, is obtained withζ0 = 0.950
andζ1 = 0.796, the energy minimum now beingE = −0.224 K. That the bare two-body
Jastrow formalism becomes less accurate when the polarization is decreased is also evident
when the↓D↑2 and↓D↑3 phases are compared. Although apparently the decrease inζ1 is small,
separate modifications toL = 0 andL = 1 seem to indicate that the↓D↑3 system is more
correlated in the central-force component than the↓D↑2 system.

On the basis of the optimum fits obtained for LOCV results to benchmark VMC results,
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it would thus seem that the↓D↑2 and ↓D↑3 phases both saturate at the same value. We
are, however, unable to determine with certainty whether or not the equilibrium density
should be identical in the three phases, since this ultimately requires an independent way
of quantifying the parametersζ0 andζ1. Nevertheless, when consistency is required in the
ordering of energy levels between the↓D↑1, ↓D↑2 and↓D↑3 phases, any significant variation in
the density dependencies of other ground-state properties should become evident in modified
LOCV calculations [24].

The behaviour of the energy with the density is also in agreement with the VMC results
reported when the↓D↑2 and↓D↑3 phases are considered. The results which differ most from
VMC results are again obtained for the↓D↑1 phase. Not only doesE(ρ) lie somewhat below
the VMC values, but in LOCV calculations it is also steeper. This could be an indication
that the elastic response of the fully polarized system should be ‘stiffer’ than that of more
degenerate systems. When the compressibility is considered, the respective saturation values
obtained for the↓D↑1, ↓D↑2 and↓D↑3 phases are 0.937, 0.961 and 0.996 atm−1. For the↓D↑2
and↓D↑3 phases these results correspond to LOCV calculations with both theL = 0 andL = 1
interaction components modified, i.e., those results which best fit the VMC values.

As to the nature of the phase diagram, no essentially new features emerge in our
calculations. Although, for instance, the (unknown) dependency ofζ uponρ should change
with ν, it is unlikely that such a change should cause a reversal in the stability of the phases.
The steeper↓D↑1 result obtained forE(ρ) in our calculations more probably strengthens the
case for a stable ordering.

5. Conclusions

To summarize, the constrained variational method provides a realistic description of ground-
state many-body↓D↑ν . Although the results for the ground-state energy are only 0.2–0.3 K
below the VMC results, an effect which is due to the truncation of the cluster expansion,
almost perfect agreement is obtained for the↓D↑2 and↓D↑3 phases when the healing condition
is modified. Our results also definitely rule out the existence of bulk↓D↑1 in a liquid state.
Modified LOCV estimates for this system generally lie somewhat lower than the VMC result,
the conventional limit of the healing condition providing a ‘lower bound’ of +0.05 K. Our best
estimate for the saturation densities of the↓D↑2 and↓D↑3 systems is 0.0036 Å−3. This estimate,
while not being inconsistent with the↓D↑1 phase, is less certain in this particular case. The
energy of the↓D↑1 phase also increases more steeply with the density in our calculations.
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