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Abstract. A lowest-order constrained variational (LOCV) method, with modified conditions of
healing on the two-body Jastrow wave function, is investigated in calculations for the ground-state

energy levels of many-body spin-polarized atomic deuterium. Results are obtained wfthe

iDg and¢D§ phases, corresponding to equal occupations of one, two or three nuclear spin states.
Estimates for the optimum healing conditions are obtained by comparison of LOCV results with
current Monte Carlo benchmarks. The nature of the phases, i.e., quantum gas or quantum liquid, is

discussed, the energy of tlu@{ phase in our calculations always occurring above the gas—liquid
interphase for healing conditions within a physically acceptable range.

1. Introduction

The helium liquids have long been a favourite testing ground for many-body methods in
quantum physics. In recent years an increasing amount of attention has been directed towards
spin-polarized quantum systems, notably ligikig. Some systems, however, such as electron-
spin-polarized atomic hydrogen, will exhibit properties with a quantum behaviour even more
extreme than that observed inligdide. This can be visualized using the ‘quantum parameter’,

i.e., n = h?/(mec?), wheree and o are related to the depth and repulsive core range,
respectively, of the two-body interaction [1]. Aggregates of weakly interacting elements of
low mass should then be strongly influenced by quantum mechanics, the lightest element being
hydrogen. The alignment of electron spins to prevent the formation of diatogmudtecules

would then enhance the zero-point energy even more.

Hydrogen exists in the form of three isotopes: hydrogen, deuterium and tritium, commonly
denoted as H, D and T, respectively. In many-body calculations, electron-spin-polarized D, or
1D, is interesting from several points of view. One is that byl in the absence of external
pressure, should exist close to the gas—liquid interphase. Only small variations in the external
pressure or field would then be needed in order to observe critical behaviour near the transition.
Hence the role of the nuclear spin, denoted Asi®important, since the ground-state energy
of the bulk system then will depend on had atoms are distributed among the spin states
available. The deuteron spin beirig= 1, bulk | D' should exhibit three possible levels of
degeneracy, sincé = +1,0, —1. Access to a given state of polarization should then be
possible by the controlled application of an external magnetic field. With only one spin state
occupied, bquLDI would be a one-component Fermi system which resembles spin-polarized

liquid 3He, i.e., quuid3HeI. Cases of two- and three-component Fermi systems would then
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be bqu¢D§ and | D!, respectively, where the former is analogous to unpolarftts i.e.,
liquid 3He}, and the latter has no such analogue.

Results for the ground-state energy levels of many-bpBy, |D} and |D} are here
obtained in calculations with a constrained variational approach, which improves upon the basic
Jastrow function without going explicitly beyond second order. The modification involves the
use of a parameter for the healing condition which is derived from the cluster expansion. In
numerical calculations this parameter is adjusted with respect to some known property of the
system, such as the equilibrium density. This is somewhat reminiscent of the approach in
Landau theory, where a number of parameters are ‘tuned’ to reproduce certain experimental
results. Other properties may in principle then be derived, which might not be experimentally
accessible. Whereas Landau theory is of a phenomenological nature, however, the modified
LOCV method is closer to the pure microscopic approach. Small-scale variations, which
might exist in the density dependence of some physical quantities, should then be easily
accessible since there is no stochastic element involved in such calculations. For instance,
the polarization dependences of quantities such as the compressibility, sound velocity and
magnetic susceptibility are not known in the case of many-body electron-spin-polarized atomic
deuterium.

The LOCV method may be used for Bose systems as well as Fermi systems, previous
results for liquid*He [2, 3] being in excellent agreement with Monte Carlo results [4]. In the
case of Fermi systems, results for both the unpolarized and fully spin-polarized phases of liquid
3He [5] were also found to be in excellent agreement with variational Monte Carlo (VMC)
and Fermi hypernetted-chain (FHNC) results [6, 7]. Our aim in this work, then, has been to
determine how well the currentbenchmark results reported in VMC many-body calculations [8]
for | D], | D} and| D} can be reproduced in the constrained variational approach.

Fortunately, the basic two-body hydrogen interaction is very accurately known. Areliable
theoretical description is given by t#éX} potential, derived by Kolos and Wolniewicz [9]
and used by Panoff and Clark in their VMC calculations [8]. It is accurately reproduced by
a Silvera model [10, 11], here denoted as S1. A modified form of the S1 model, however, is
generally regarded as the best empirical representation 6f Ejepotential. This model [12]
is denoted as S2 in our calculations. To illustrate the response of the results to the choice of
interaction, we also include, using the conventional healing condition in LOCV calculations,
a few results obtained with both the S1 model and an older Lennard-Jones (LJ) model [1] in
addition to results obtained with the S2 model.

2. The LOCV method

In classical statistical mechanics, the many-body problem is developed from the configuration
integral

ON(V,T) = / exp[—BU (1, ..., r\)] dVry - d*Vry (N
whereU = U(ry, ..., ry) is the potential energy, i.e.,
U:Z Z v(ri,rj)+z Z Zv(n,rj,rk)+-~-.
1<i<j<N 1<i<j<k<N

The LOCV method [13] depends on a generalization of Van Kampen'’s expansion [14] of
equation (1) to quantum statistical mechanics, enabling the energy
(W|H|W)

E= " @
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to be developed in a cluster series. This technique is Nosanow’s cluster expansion [15], and
requires the use of a generalized normalization integral, given by

M(y)=(vier|v).

An expression for the energy consistent with (2) is then
d
E=Ilm —|InM 3
lim, ay[ ] 3)

whereby a series expansion follows by assuming a product expansitf(for In Nosanow’s
method we thus treat the generalized normalization integral in the spirit of Van Kampen'’s
technique. Hence,

N
My)=[]M.») 4

is obtained, where

n—1 -1
M) =[] {(weﬁwwn)[]—[ M,S;”(y)] }

{n}eN m=1

is expanded with respect to all distinct clustebg,representing a cluster wave function. The
nth-order term is

<‘1’($i1mi2 g )€ @) | (g @, mi"))

M, (y) = T (5)
1_[ 1<i1<1z_<[<in<N l_[ Mi(y;xiy--xi) - - My_1(y; @iy - - - ;)
where
Mi(y:mi,-z) = [[ (¥@pe?Ow()
1< J1<n

(W (@))€ 1Ow())
My()

Moy -m) =[] I

1 )j1<j2<n

Mya(y; @iy -+ @i,) = l_[ l_[ l_[ (V@) -, )OO )).

i1< 1< ja K jn-1<in M1() -+ My—2()

Using (3), (4) and (5), the energy contributions can be obtained. Hence, the total ground-
state energy is finally obtained as

E = Z{ Z Z 'ch(ils i29~--ain)} (6)

1< <ip<ki, KN

where thenth-order term is

n—1
Colig i ovip) = g E) Z{ 3 --~Zcm<j1,jz,...,jm>}.

= i1 <1< Jim K

Strong repulsion at short separation is the dominant interaction feature. Hence, with
x; representing both orbital and nuclear spin coordinates, a convenient choice of trial wave
function for the components of

(i, jih= [] v2=]] [] v@izp

{i.j}eN 1<i<j<N
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is the Jastrow function [16], i.e.,

1 o0
W, = 754%) ; fL()PLo(r, o) @)

where the centre-of-mass wave function, usig= %(r,- +7;), reads

1 .

P(R) Ja exp(K - R)
andP, is a projection operator for theth partial wave. Withr = |r; — r;| for the relative
coordinate,f; (r) is a spherically symmetric correlation function. On physical grounds, we
require (i) f — 0 in the limit of zero separation and (ifj, — 1 in the limit of very large
separations. In practical calculations, however, it will be convenient to specify some finite
valued; for the interparticle separation, at which correlations vanish. When this condition is
realized, the ‘wound’ in the wave function, as caused by the potential interaction energy, has
been ‘healed’, and consequentdly is known as the healing distance. Thus, (ii) above should
be replaced by

fir=dy) =1 8)

The physical justification of (8) is the assumption that two-body correlations in the system
are mainly due to strong repulsive effects at short, i.e., finite, range. Nevertheless, weaker
correlations exist at intermediate ranges which, in turn, means that this condition is not strictly
true whenr > d. The specification of &; at which correlations cease altogether, however,
requires the additional condition

fir>dy)=0

which implies that (8) must be extended to separations for whishi. Furthermoregd; = d
is imposed for allL since, due to the finite range of the interaction core, correlations in higher
L-states must be weak. Finally, the boundary conditiong;an) are stated as

fir=0=0
for>d)y=1 9)
fir>d)=0.

Assuming translational invariance, i.e., plane waves for the single-particle wave functions,
the uncorrelated relative contribution to (7) reads
¢(r, o) = explik - 1) x " (0, o)) — exp(—ik - 1) x (o}, 0}) (10)

where an expansion in terms of partial wayes used, i.e.,

exp(tik-r) = Y (EDELQRL +1)j. (kr)PL(cOS).
L=0

In the case of spin-1 deuterons, the distinct permutations, of; on x;, x; result in nine
nuclear spin states; that is,
x"(0i,05) = xi(0)x;(0})

Where(U,, U]) equali'*l, +1)! (+17 0)1 (07 +1)l (0’ O), (+1a _1)1 (_17 +l)! (_17 _1)1 (0’ _1)
and (—-1,0) whenn = 1,...,9, respectively. These may be rearranged into linear
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combinations corresponding to eigenvalues of the total SpiHlence,xs(o;, o;) can either
be one of theS, = +2, +1, 0, —1, —2 (S = 2) quintuplet states

xP(oi, o))

1 1

— %@, 0+ —x¥(0;, 0

ﬁx (0i,0}) ﬁx (0, 0})

1 1

xs(oj, 07) = EX(S)(W’U,‘)"'TZX(G)(UhUj) (11)

L e st O o

ﬁx (0i,0)) ﬁx (0i,0))

X(7)(f7i, o;)

or it can be one of thd, = +1, 0, —1 (S = 1) triplet states

1 1
ﬁx(a(m, 0j) — 72)((3)(01', o;)
1 1
xs(oi, o) = EX(S)(UI‘, oj) — TZX(e)(Ui, oj) (12)
1 1
EX(S)(C%G;) - Ex(g)(gi,aj)
or, finally, theS, = 0 (S = 0) singlet state
xs(0i,0)) = x@(0i,0)). (13)

An interchange ob; ando; now makes the quintuplet and singlet states symmetric and
the triplet state antisymmetric. Hence, equation (10) becomes

¢(r, o) = [exp(ik - r) — (=1)° exp(—ik - )] x " (0;, 7).

The correct antisymmetry requires tie= 1 triplet for evenL and theS = 0 singlet or the
S = 2 quintuplet for oddL. Due to weak correlations in highérstates,. = 0 andL = 1
are assumed in the two cases, respectively.

For the first termC; in the energy expansion; is a normalized plane wave arf is
simply taken to be the kinetic energy operator

R? 92
2m ar2’
For the second term,, the matrix elements of

2 [ 92 "2 [ 92
Hy=——| — +
2= " am <8R2> <8r2) v(r)
are taken with respect to theth-wave contributions of,, i.e., \sz = fLPL®,. The terms

C3, C4, ... are discarded, and, usidg(kr) = krj; (kr) for the spherical Bessel equation,
E = E; + E> becomes

Hy=—

o0
E = (@5 v, |DF) 14
1<Z'<:N Z:1<l<21:<1v \IJ2|\112 LZ=O o 4

where the effective interaction is

—hL f2(r) r<d

ve(r) = v(r) r>d

(15)
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and
2 2
(Wa|Wp) =2 (Z!m(cn,a,-)} ) (16)
S=0 S
is obtained for the normalization of the wave function. Due to spherical symmetry, a radial
variation results fosE = 0, i.e.,

d 72 ’
5 / Jf[ - h—(.fi’fL +2fy 2L L) +( +AL>f5] dr =0 (17)
0 m Jr

where the explicit dependency bhas been eliminated by the choice of an average momentum.
Using the root mean square valuekcE |%(k,~ —k;)|, the angular integration & = |k1 + k|
with respect to the geometry of allowed combinationsiork; in (17) is

4 0<%K<k|:—k
1
fdQK: 4n<k§—k2_ZK2>(kK)1 ke —k < %K <(k,%—k2)1/2

0 (k2 —k*Y?2 < 1K < 0.

The total integration with respect # of a pair of particles with a givek then becomes

Jor= e 34

wherekg denotes the Fermi wavenumber. Thus,
kay = 0.3k

is obtained for the average momentum. Agreement with the boundary conditions introduces
a constraint and requires the inclusion of a Lagrange multiplier Hence, usingt, (r) =
fL(r)Jp(kr), equation (9) implies

L(L+1
uZ(r)—{%[v(r)h\L] %—kfv}u(n:o (19)

upon solution of the Euler-Lagrange equations. The Lagrange multiplier is thus the math-
ematical equivalent of our average background field.

The truncation (14) of the cluster expansion (6) is justified by the assumption that the
most important contributions, i.e., those due to the core of the interaction, are of sufficiently
short range to be described by two-body clustering terms (correlations with nearest neighbours
only) and that all other contributions (the totality of interactions with distant neighbours as well
as the intermediate- and long-range part of the nearest-neighbour interaction) are adequately
described by the average field. It is important to realize the implication that correlations in the
clustering sense are not present between distant neighbours in this assumption. Unfortunately,
due to this truncation, the upper-bound variational property of (2) is lost in our calculations.

In conventional LOCV calculations, the conditions of healing are derived by requiring,
on average, that the sum with respect md j over

(V2| 02| V)

P, — 20
2T T (Wylwy) (20)

iO r>d
0, =

where

1 r<d
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should be consistent with finding exactly one other particle within the correlation volume. For
ther < d probability per pair, this give®, = O,, where
— 1 1
02 = — ] —
N-1 N
in the limit N — oo of a large system. For a homogeneous isotropic system, this probability
must be proportional to the probability per unit volume, i.e.,

P, = o (21)
where¢ is the proportionality constant. We thus obtain
pw(d) =1 (22)

when¢ = 1, for the healing conditions.

Equations (20) to (22) correspond to Pandharipande’s original definition of the healing
distance [13], where it is hoped that local correlations left out in the truncation of (6) are either
sufficiently weak to be neglected or may be merged, without inducing too large errors, with
the global-type correlations assumed fir).

This may not represent the best choice of a healing distance, however, since the flexibility
inherent in such a concept has then not been fully exploited. Using instead Nosanow'’s full
expansion for the clustering probability, i.e.,

(V]O|V)

(W[W)
a separate treatment of local and global average contributions can be visualized by invoking an
independent-particle-model analogy for the lowest-order terms in the series. In the expansion

for E these terms represent the kinetic energy contributions, whereas in the expangton for
we define

-1
P1=(ZI) > (o

1<k<N
where(0;) is the normalized expectation value with respectitoof identifying particlei
within some set; of particles, i.e.,
(V1] O1|W¥1)

01) =
(00 = vy

Statistically, we obtairP; = 01, where

i
—<0:1«<1 23
S <0 (23)

when 1< n; < N, respectively. With a truncation of

P= ﬁ: P (24)
k=1

atk = 1, P = 1 requiresn; = N, in which case contributions are from the kinetic energy
alone. Thus, the ideal gas provides an adequate madet, 1 representing a free particle.
Considering thev > 1 interacting system, on the other hand, we have N for the number

of uncorrelated particles, i.eR < 1, a situation which may be interpreted as requiring an
average field(Ll) for a ‘full’ description.
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Inthe presence of strong short-range correlations, however, a specific treatmentis required
to handle local distortions to the field”. We then consider in detail the correlations afith
j. Hence, setting; = 1, equation (23) is ‘re-scaled’ to

1x

——— <0

NN -1) = N
for the respective limits, when g n; < N — 1, on the joint probability of;; andn ;. For the
second-order term in Nosanow’s cluster expansion,

-1 -1
N 2
r=(3) L ¥ loa-(2) o) @5)
1<i<j<N i<k<j
we next introduce
0, — {51 r>34
1 r<3~é

where(0,) is the expectation value with respectd¥g of observing- < §. Defining

O»= 0,— 0 (26)
we obtain statistically?, = 0,, and (26) becomes
~ ;]\N — nj
0= ————
2T NN 1)

7 being the number of times that< § occurs in the expansion with respectitoFor each
sum overj, the occurrence of a single such event, ifes 1, constitutes two-body clustering.
ConsideringV = 2, we haver; = 1, and since

_ nj(N—=2)+7N
~ N(N-1
the only solution which is consistent with = 1 is7 = 1. This corresponds to two-body

scattering. Consideriny = 3, on the other hand, we have<lr; < 2. In this casep = 1
requires

(27)

4<A<5
3\77\3~

That is, it requires cluster contributions beyond second order. Assuiiad nonetheless,
we obtain for the clustering probability

—<P<L =
3 6

i.e., P < 1, and alocal clustering fielu‘Lz) must be used to account for the truncation of (24)

atk = 2. From (27) we see thd = 1 can also be obtained with= 1 for anyvalue ofN,

provided that:; = N. However,n; = N would mean that the independent-particle model

provides an adequate description. Hen@g vanishes, as it should for a weakly interacting

system. FoiV > 1, we generally obtain

2 =

1t 5,<t
N(N —1) N
whenN —1 > n; > 1. With
w(8)

Q
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this leads to

< po(®) < 1 2
o < po) (28)

whereN > 1, for the healing condition.

It may be noted that, consistently with the truncatiom at 2 of the expansion fokE,
equation (22) is now obtained fof¥ = 2 rather than in the limilv — oco. Thus, forN > 2,
the parametey in (21) can be stated as

0<¢<1

providing a ‘renormalized’ healing condition, i.es(d) — w(§) = ¢w(d), whereby a
modified healing distancg& < d is obtained forz < 1. As¢ is decreased within the interval
above, the validity of (28) becomes more questionable. The average\ fieithy thus, in
general, be regarded as a compromise between a global long-range attractive field and a local
short-range repulsive ‘clustering’ field.

Next, the sum over distinct paifs;j is replaced by an integration; that is, for some function
G we obtain

13 & 1
52 2 Glkiky) — E”Z/k k G(k)fd3K &’k (29)

ki#k;
where
Q
EE
is the density of states in the Fermi sea, and (18) represents the centre-of-mass integration.
Equation (29), in combination with

f [1 + cog2k - r)] / d*K d*k = 1—96712k§[1 + S%(ker)]

7”:

where
3 .
S(ker) = ﬁ[sm(k,:r) — (kgr) coqker)]
F
is the Slater function, determines the average contributia® foom the matrix elementO,)
in (25). Defining
Fp(ker) = 1+ (=1)"S?(ker)
we obtain

1
w(8) = 4n Z apwr(8) (30)
L=0
where we have

8
wr(8) = / fE(r)Fp(ker)r? dr (31)
0

with the parameterg, andw; depending on the spin states (11), (12) and (13).vFerl, spins
occur in the{+1}, {0} or {—1} state. Hence, the spin function is a quintuplet or a singlet state
and we obtainrg = 0 andw; = 1. Forv = 2, spins are evenly distributed over tfel, —1},

{+1, 0} and{0, —1} states. Whereas all three cases then involve one triplet contrib{itibrQ}
and{0, —1} additionally involve two quintuplet contributions and a singlet contribution. Three
additional quintuplet contributions are involved {etl, —1}, but no singlet contribution in this
case. The result for = 2, then, in all three cases,dg = % andag = %. Finally, forv = 3,
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spins are distributed evenly over thel, 0, —1} states. Hence, all singlet, triplet and quintuplet
states contribute, in which case we obtajn= % anda; = %

The ground-state energy per particke,= E/N, is now obtained from the truncated
energy expansion (14). An integration over the Fermi sea gives

672p

k=
F V

and hence the kinetic energy per particle is obtained as

3h%kE
fi="5T (32)
Using (14), (15), (16), (29) and (31), we obtain for the potential interaction energy per particle
1 o)
E = —2np ZaL |:ALwL &) — f v(r) Fy (ker)r? dri|. (33)
L=0 s

Finally, with (32) and (33), the total energy reads
E=8&6+6&. (34)

3. Results

The results of our LOCV calculations are obtained by solving (19), (30) and (34) self-
consistently with respect to the boundary conditions far), i.e., equation (9). Below,
results corresponding to density increments of1A-3 are displayed.

For conventional LOCYV calculations, usigg= 1 in (21), energy minima for the three
phases obtained with the S1, S2 and LJ interaction models are included in table 1, and curves
for £(p) obtained with the S2 interaction model are displayed in figure 1. The only potential
which gives negative energy minima in all phases is the LJ model. The S1 and S2 results
are negative for theDg and¢D§ phases only. Generally, the difference in energy between
v = 3 andv = 2 is seen to be somewhat less than half the difference betweer? and
v = 1. Furthermore, results obtained with the S2 model are 0.25-0.3 K lower than the S1
results, and results obtained with the LJ model approximately 0.5 K lower than the S2 results.
An increase of about 12% is observed in the equilibrium densjtgs the spin degeneracy
increases fromr = 1 tov = 2. Betweernv = 2 andv = 3, however, the equilibrium densities
increase by a much smaller amount. The results which agree best with the VMC results are
those obtained with the S1 interaction model. There are no inversions, i.e., the correct ordering
£(ID}) < £(ID)) < € (D)) is also obtained for the energy levels.

Table 1. Ground-state energy minima for tb@{, ¢D£ andLDg phases obtained in conventional
LOCYV calculations § = 1) with the S1, S2 and LJ potentials.

v=1 v=2 v=3
po (A73) & (K) po (A73) £ (K) po (A73) & (K)
S1 Q00425 0312 Q00478  —0.040 Q00476  —0.209
S2 Q00468 0051 Q00524 —0.332 Q00522  —0.499
LJ 0.00499 0417 Q00564  —0.845 Q00566  —1.005

In modified LOCV calculations, equation (28) is applied in a mode corresponding to
N > 2. Adecrease is then observed.iwith p, indicating that cluster contributions neglected
in the truncation of (6) are mainly of a repulsive nature. As far as the two-body interaction is
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0.6
0.4 F i
+
0.2 F i
EIK] 0.0
+
—0.2 |- -
—04 -
—0.6 | | | 1 | | |
0.0000 0.0020 0.0040 0.0060 0.0080
p [A~7]

Figure 1. Conventional LOCYV results¢( = 1) obtained with the S2 model for th[eDI, LDg
and ¢D§ phases, and the VMC minima (+). Both the LOCV and VMC results shown have
£(ID)) < E(ID)) < E(D)).

concerned, the repulsive core thus increases in relative importance. Moreover, modifications
are restricted td. = 1 interactions, since effects of higher-order clustering should be less
likely in L = O central-force interactions.

The equilibrium density reported in the VMC calculations is the same in all three phases,
i.e.,0.0040 A3. Considering bulk, D!, the modified LOCV energy minimum consistent with
this density, using; = 0.931, is +0146 K. Comparing instead with the ground-state energy
reported in VMC calculations, i.e., 26 K, an equilibrium density of 0.0027 & is obtained
for &3 = 0.775. A value which passes through the VMC minimum is obtained;fet 0.856,
the modified LOCV minimum of 0.217 K in this case occurring at a density of 0.0033 A
An overall ‘best fit’ is suggested in figure 2 where the minimung e 0.186 K is obtained at
po = 0.0036 A3, usings; = 0.893. Numerical values faf (p) corresponding to the results

0.8

0.7 -

0.6 -

04

0.3 -

0.2

0.1 I | I \ | I I I
0.0020 0.0030 0.0040 0.0050 0.0060

p [A77]

Figure 2. The ground-state enerdg¥(p) for the ¢DI phase, where modified S2 LOCV results
(solid line: ¢; = 0.893) and VMC (+) results are compared.
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displayed in figure 2 are included in table 2, where data for the average fialttl the healing
distances are also included. The decrease obtainethiwhen¢; is reduced to 0.893 varies
between 0.13 K at 0.0025& and 1.92 K at 0.0060 A2, being 0.65 K at 0.0040 &. The
corresponding decreasednwhich is about 0.11 A at 0.0040°A&, is approximately constant
for this range of densities.

Table 2. Results for theLDI phase obtained in modified LOCV calculations with the S2 model
for the two-body interactions.

VMC?2 Modified LOCW®
p (A=3) £ (K) s(A)  8/p Xo (K) A1 (K) & (K)
0.0025 036 5569 1234 — 0580 Q271
0.0030 029 5308 1249 — Q037 0216
0.0035 026 5101 1262 — —0.750 Q188
0.0040 026 4931 1274 — —1.780 Q197
0.0045 4787 1285 — —3.053 0253
0.0050 041 4663 1296 — —4.565 0364
0.0055 4554 1306 — —6.315 0538
0.0060 Q71 4457 1315 — —8.298 Q782

@ Variational Monte Carlo results, from reference [8].
b Using (28), with¢; = 0.893.

For the¢Dg phase, the energy minimum consistent with equilibrium at 0.0049 4
—0.148 K, and is obtained for; = 0.839. The result obtained fan = 0.788, however,
corresponds to an energy minimum-60.106 K at 0.0036 A2, and seems to fit the VMC
values over the entire range of densities reported rather well. Theresultisshowninfigure3. The
changes i, A1 ands with ¢; andp are analogous to those in tb@l phase, with decreases
of 1.39 K, 0.87 K and 0.16 A, respectively, being obtained at 0.004b Alumerical data for
some of the densities in the result displayed are included in table 3.
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Figure 3. The ground-state enerdgi(p) for the ¢D£ phase, where modified S2 LOCV results
(solid line: ¢p = 1, ¢1 = 0.788; dotted line:zp = 0.980,¢; = 0.800) and VMC (+) results are
compared.

The¢D; phase result consistent with the VMC density of 0.0046G & —0.314 K, and
is obtained forz; = 0.801. Consistency with the VMC energy, on the other hand, moves the
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Table 3. Results for theLDg phase obtained in modified LOCV calculations with the S2 model
for the two-body interactions.

vMmC?2 Modified LOCW®
p (A=3) € (K) s(A  8/p 20 (K) 1 (K) & (K)
0.0025 Q00 5526 1226 —2.078 Q727 —0.019
0.0030 —0.06 5275 1242 —3230 0230 —0.076
0.0035 —0.06 5075 1256 —4619 —0501 —0.105
0.0040 —0.08 4910 1269 —6.243 —1466 —0.096
0.0045 4770 1281 —8.102 —2.664 —0.040
0.0050 Q06 4649 1293 —-1019 —4.093 Q069
0.0055 4543 1303 -—1251 -5.752 0240
0.0060 046 4448 1313 -—1505 —7.637 Q478

a Variational Monte Carlo results, from reference [8].
b Using (28), withz; = 0.788.

equilibrium density as far down asd®30 A-3, in which case; = 0.635. With¢; = 0.740,

a more successful fit between modified LOCV values and VMC benchmarks is obtained, the
ground-state energy and equilibrium density in this case bei®dg@70 K and 0.0036 A3,
respectively. The result is shown in figure 4. Corresponding numerical values are included in
table 4, and the observed decreasekin, ands with ¢, at 0.0040 A3 are 1.02 K, 0.66 K

and 0.12 A, respectively.

04 |
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Figure 4. The ground-state energi(p) for the iDg phase, where modified S2 LOCV results
(solid line: ¢o = 1, ¢1 = 0.740; dotted line:zop = 0.950,¢1 = 0.796) and VMC (+) results are
compared.

Plots of the effective interactions (15) are included in figure 5 and figure 6, where the

density dependencies af(r) andv1(r) are shown for the values pfthat have been included
in the tables.

4. Discussion

In comparing with VMC benchmarks, a few remarks should be made about some of the
approximations used in the LOCV method. Triplet correlations in VMC calculations are
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Table 4. Results for theLD; phase obtained in modified LOCV calculations with the S2 model
for the two-body interactions.

vMmC?2 Modified LOCW®
p (A=3) € (K) s(A  8/p Lo (K) 21 (K) £ (K)
0.0025 -0.14 5493 1220 -1931 Q763 —0.178
0.0030 —0.19 5248 1237 -3.041 0266  —0.239
0.0035 -0.21 5052 1251 —4.384 —0.464 —0.268
0.0040 —0.21 4890 1265 —5958 —1425 —0.259
0.0045 4753 1277 —7.761 —2.618 —0.201
0.0050 —0.10 4634 1289 —9.790 —4.038 —0.089
0.0055 4530 1300 -1204 -5.685 Q084
0.0060 034 4437 1310 -1452 7555 0325

a Variational Monte Carlo results, from reference [8].
b Using (28), withzy = 0.740.

16 |

12 + h .

Figure 5. The L = 0 effective interaction (15) obtained for tl;lé)g phase, withp varied in steps
of 0.0005 A3 between (a) 0.0025 & and (b) 0.0060 AS.

explicitly incorporated into the wave function by generalizing upon the Jastosatz
provided that the most important correlations are between nearest neighbours only, Jastrow
correlations defined in conjunction with an average field should not give results that are radically
different from this prescription. Also, whereas an explicit momentum dependence is built
into the wave function in VMC calculations [17], the momentum is treated in an average
way in LOCYV calculations. Nevertheless, for Fermi systems intermediate in coupling strength
between nuclear matter and liqifide, an average over allowed momentum states in the Fermi
seais expected to be a good approximation [18]. Due to the truncation of the cluster expansion,
however, the feature which is most likely to affect comparisons with VMC results is the loss
of the upper-bound variational property. This results in the ground-state energy levels being
systematically underestimated, an effect which is accentuated for strongly coupled systems
and in the presence of significant short-range correlations beyond nearest neighbours. The
characteristic underestimation is clearly visible in figure 1, where LOCV levels are seen to be
consistently lower than VMC levels.

A number of methods have been used in calculations for many-h&dy The result
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Figure 6. The L = 1 effective interaction (15) obtained for tbd-Dg phase, witho varied in steps
of 0.0005 A3 between (a) 0.0025 2 and (b) 0.0060 A3.

obtained for theLDI phase with a Galitski-Feynman—Hartree—Fock (GFHF) method, using
the S2 interaction model, is +41 K at 0.00343[19]. Fermi hypernetted-chain techniques

[20] in conjunction with correlated basis functions [21] have also been applied. Although the
latter FHNC—-CBF scheme is generally regarded as more reliable than the GFHF method, the
delicate balance between kinetic and potential energy contributions is in this case obscured by
statistical errors.

The result obtained for bulkDI with the FHNC—CBF approach is 486 K at 0.0040 A3
[21]. In the VMC benchmark calculations, conclusions drawn from the FHNC—CBF scheme
were used to obtain a trial wave function which improves upon the basic two-body Jastrow form
by including triplet and momentum-dependent correlations. InLID% phase, however, the
Jastrow energy alone was assumed to be sufficientin FHNC—-CBF calculations. The effects of
triplet and backflow correlations in VMC calculations are negligible in this case, but according
to Panoff and Clark [8], thg DI phase result of +@6 K at 0.0040 A3 should probably be
lowered somewhat. Although the conventional S2 LOCV result obtaine@isk0 lower, it
still lies above the gas-liquid interphase. This is a very strong indication tha]LIiIIIshould
be a gas in the ground state, since the right-hand-side limit of (28) represents a ‘lower bound’
for the energy in our calculations.

An interesting question related to results for m} phase is that of how well the Jastrow
function describes the ground state of a spin-polarized Fermi system. For instance, for liquid
3He the Jastrow function alone provides better results for the fully spin-polarized phase, the
exclusion principle then being more effective in preventing a close proximity between particles.
Specifically, in FHNC calculations for liquitHe, inclusion of triplet correlations and backflow
amounts to a shift in the ground-state energy-@&24 K for the fully spin-polarized phase
and—1.08 K for the unpolarized phase [7]. The corresponding discrepancies between FHNC
results and conventional LOCV results increase from as little 240n the former case to
0.7 K in the latter case [5]. In the present calculations the discrepancies between VMC and
LOCV results are more or less comparable, imS,(LDI) = 0.21 K, A5(¢D£) = 025K
and A8(¢D§) = 0.29 K, whereA€& = &ymc — ELocv- A lowering of the Jastrow energy by
~0.05-0.10 K, however, would enable a more precise fit to be obtained for the modified LOCV
results to the VMC results. Also, the LOCV Jastrow discrepancy would be notably less in the
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D] phase than in both thgD] and | D] phases.

For the¢Dg phase, a CBF perturbative correction-e0.23 K is obtained in FHNC-CBF
calculations. This results in a ground-state energy 003X at 0.0035 A3 [21]. The S2
GFHF resultin this case is H08 K at 0.0032 A3 [19]. With triplet and backflow correlations,
Panoff and Clark obtain the benchmark saturation value fonm; system, i.e.—0.08 K
at 0.0040 A3 [8]. The result which saturates at the VMC energy minimum in modified
LOCYV calculations, on the other hand, is obtained at 0.0032 f&r ¢; = 0.750. In this
case, no healing condition (28) with modifications to the= 1 interaction component is
consistent with a result in the gas phase. That is, whes reduced, the saturation value
initially moves more or less linearly towards higher energies and lower densities. As the gas—
liquid interphase is approached, a (negative) maximum is reached, whereupon the minimum
again moves downward. Only when modifications to the- 0 interaction component are
included is saturation possible in the gaseous phase. It should, however, be remembered that
the conditions of healing increasingly become more questionable as one moves further away
from the right-hand side limit of (28). Nevertheless, our LOCV results are still a very good
indication that bquLDg should be a self-bound liquid.

The CBF perturbative correction reported for thbg phase in FHNC—-CBF calculations
is —0.27 K, the ground-state energy now beir@.15 K at 0.0035 A3 [21]. The energy
obtained in S2 GFHF calculations is0.31 K at 0.0035 A2 [19]. Hence, reliable results
obtained for this system are all consistent with a ground-state energy below the liquid—gas
interphase, Panoff and Clark’s benchmark value beif@1 K at 0.0040 A3. The gaseous
phase is highly improbable, since in our calculationsithe 3 energy always occurs below
thev = 2 energy. In fact, this system is bound already at the two-body Jastrow level in VMC
calculations [22].

The results shown in figures 2, 3 and 4 all saturate at a density of 0.003@&ié the
healing conditions chosen. In the case of u’riEI phase, however, the exact position of the
minimum is uncertain and the ‘best fit' shown was chosen so as to agree with the saturation
densities of the other two phases. As far as ligihtk is concerned, triplet contributions
obtained in VMC calculations are seen to be almost exclusively due tb thel interaction
component [23]. The decrease observed in the paramgetersomewhat larger than that
obtained for the healing conditions of liquite [5]. Thus, to see how higher-order cor-
relations in the central-force component might affect the energy, the minimum obtained by
modifying theL = 1 component may be used as an initial approximation when modifications
to L = 0 are considered. In thkaDg phase, modifications tbh = 0 should probably be small
since the result already obtained fp) agrees very well with VMC values.

Thus, considering equilibrium densities in the range 0.0038 # 0.0040 A3, ¢, is
gradually decreased while requiriggto be consistent with the equilibrium density obtained
when onlyL = 1 is modified. In figure 3, a result f&i(p) is suggested which fits the VMC
values over the range reported. Using= 0.980 and¢; = 0.800, the equilibrium density
obtained in this case js = 0.003 64 A-3 with a ground-state energy 6f= —0.092 K. For the
¢D§ phase, an overadl(p) which fits the VMC values very well over the range reported also
saturates gbo = 0.003 64 A3, This result, included in figure 4, is obtained with= 0.950
and¢; = 0.796, the energy minimum now beirg = —0.224 K. That the bare two-body
Jastrow formalism becomes less accurate when the polarization is decreased is also evident
when the| Dg and| Dg phases are compared. Although apparently the decreasesismall,

separate modifications tb = 0 andL = 1 seem to indicate that thEDg system is more

correlated in the central-force component thanit@é system.
On the basis of the optimum fits obtained for LOCV results to benchmark VMC results,
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it would thus seem that th¢D} and | D} phases both saturate at the same value. We
are, however, unable to determine with certainty whether or not the equilibrium density
should be identical in the three phases, since this ultimately requires an independent way
of quantifying the parameterg andz;. Nevertheless, when consistency is required in the
ordering of energy levels between thB., | D} and| D} phases, any significant variation in

the density dependencies of other ground-state properties should become evident in modified
LOCYV calculations [24].

The behaviour of the energy with the density is also in agreement with the VMC results
reported when th¢ D} and | D] phases are considered. The results which differ most from
VMC results are again obtained for tb@{ phase. Not only doeE (p) lie somewhat below
the VMC values, but in LOCV calculations it is also steeper. This could be an indication
that the elastic response of the fully polarized system should be ‘stiffer’ than that of more
degenerate systems. When the compressibility is considered, the respective saturation values
obtained for the, D], | D} and D} phases are 0.937, 0.961 and 0.996@tnFor the| D}
and| Dg phases these results correspond to LOCV calculations with both+h@ andL = 1
interaction components modified, i.e., those results which best fit the VMC values.

As to the nature of the phase diagram, no essentially new features emerge in our
calculations. Although, for instance, the (unknown) dependengyugfon p should change
with v, it is unlikely that such a change should cause a reversal in the stability of the phases.
The steeperLDI result obtained folE (p) in our calculations more probably strengthens the
case for a stable ordering.

5. Conclusions

To summarize, the constrained variational method provides a realistic description of ground-
state many-body,D!. Although the results for the ground-state energy are only 0.2-0.3 K
below the VMC results, an effect which is due to the truncation of the cluster expansion,
almost perfect agreement is obtained forilﬁb} and¢D§ phases when the healing condition

is modified. Our results also definitely rule out the existence of blﬁ)% in a liquid state.
Modified LOCYV estimates for this system generally lie somewhat lower than the VMC result,
the conventional limit of the healing condition providing a ‘lower bound’ of68K. Our best
estimate for the saturation densities of 1i2) and| D] systemsis 0.0036 . This estimate,

while not being inconsistent with theDI phase, is less certain in this particular case. The
energy of theLDI phase also increases more steeply with the density in our calculations.
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